Search results for "Approximate entropy"
showing 5 items of 5 documents
Characterization of entropy measures against data loss: Application to EEG records
2012
This study is aimed at characterizing three signal entropy measures, Approximate Entropy (ApEn), Sample Entropy (SampEn) and Multiscale Entropy (MSE) over real EEG signals when a number of samples are randomly lost due to, for example, wireless data transmission. The experimental EEG database comprises two main signal groups: control EEGs and epileptic EEGs. Results show that both SampEn and ApEn enable a clear distinction between control and epileptic signals, but SampEn shows a more robust performance over a wide range of sample loss ratios. MSE exhibits a poor behavior for ratios over a 40% of sample loss. The EEG non-stationary and random trends are kept even when a great number of samp…
Complexity analysis of experimental cardiac arrhythmia
2014
International audience; To study the cardiac arrhythmia, an in vitro experimental model and Multielectrodes Array (MEA) are used. This platform serves as an intermediary of the electrical activities of cardiac cells and the signal processing / dynamics analysis. Through it the extracellular potential of cardiac cells is acquired, allowing a real-time monitoring / analyzing. Since MEA has 60 electrodes / channels dispatched in a rectangular region, it allows real-time monitoring and signal acquisition on multiple sites. The in vitro experimental model (cardiomyocytes cultures from new-born rats' heart) is directly prepared on the MEA. This carefully prepared culture has similar parameters as…
Multi-modality of polysomnography signals’ fusion for automatic sleep scoring
2019
Abstract Objective The study aims to develop an automatic sleep scoring method by fusing different polysomnography (PSG) signals and further to investigate PSG signals’ contribution to the scoring result. Methods Eight combinations of four modalities of PSG signals, namely electroencephalogram (EEG), electrooculogram (EOG), electromyogram (EMG), and electrocardiogram (ECG) were considered to find the optimal fusion of PSG signals. A total of 232 features, covering statistical characters, frequency characters, time-frequency characters, fractal characters, entropy characters and nonlinear characters, were derived from these PSG signals. To select the optimal features for each signal fusion, …
Estimating the decomposition of predictive information in multivariate systems
2015
In the study of complex systems from observed multivariate time series, insight into the evolution of one system may be under investigation, which can be explained by the information storage of the system and the information transfer from other interacting systems. We present a framework for the model-free estimation of information storage and information transfer computed as the terms composing the predictive information about the target of a multivariate dynamical process. The approach tackles the curse of dimensionality employing a nonuniform embedding scheme that selects progressively, among the past components of the multivariate process, only those that contribute most, in terms of co…
Are nonlinear model-free conditional entropy approaches for the assessment of cardiac control complexity superior to the linear model-based one?
2016
Objective : We test the hypothesis that the linear model-based (MB) approach for the estimation of conditional entropy (CE) can be utilized to assess the complexity of the cardiac control in healthy individuals. Methods : An MB estimate of CE was tested in an experimental protocol (i.e., the graded head-up tilt) known to produce a gradual decrease of cardiac control complexity as a result of the progressive vagal withdrawal and concomitant sympathetic activation. The MB approach was compared with traditionally exploited nonlinear model-free (MF) techniques such as corrected approximate entropy, sample entropy, corrected CE, two k -nearest-neighbor CE procedures and permutation CE. Electroca…